
Advanced Persistence with Advanced Persistence with
COM HijackingCOM Hijacking

About UsAbout Us
Sean HopkinsSean Hopkins

 Red Team Security Engineer for Millennium CorpRed Team Security Engineer for Millennium Corp

 Reader of things, sometimes booksReader of things, sometimes books

 Shameless retweeterShameless retweeter

Shawn EdwardsShawn Edwards

 Cyber Adversarial Engineer for The MITRE CorporationCyber Adversarial Engineer for The MITRE Corporation

 Brewer of meadsBrewer of meads

 Hiker of placesHiker of places

What are DNS?What are DNS?

Approximately 30
minutes on this
topic

COM HijackingCOM Hijacking

 The process of intercepting a Registry key query COM The process of intercepting a Registry key query COM
reference that is non-existent and pointing it to our reference that is non-existent and pointing it to our
malicious payload.malicious payload.

 Use ProcMon to nab GUID/CLSIDUse ProcMon to nab GUID/CLSID
 Write key to HKCU/HKU that points to DLL backdoorWrite key to HKCU/HKU that points to DLL backdoor

What is a GUID?What is a GUID?
 An acronym that stands for Globally Unique IdentifierAn acronym that stands for Globally Unique Identifier

 128-bits128-bits

 For the sakes of this talk, just know it is a random string that will help us identify and For the sakes of this talk, just know it is a random string that will help us identify and
control our payloadcontrol our payload
 Ex: 8efdb002-faf7-4dc9-b30c-b34e1c22c014Ex: 8efdb002-faf7-4dc9-b30c-b34e1c22c014

 Quite a few possible unique identifiers:Quite a few possible unique identifiers:
 340,282,366,920,938,463,463,374,607,431,770,000,000340,282,366,920,938,463,463,374,607,431,770,000,000
 You have the same chance of being hit by a meteorite in a year as getting a collision of You have the same chance of being hit by a meteorite in a year as getting a collision of

GUIDsGUIDs

COM Hijacking -Phase ICOM Hijacking -Phase I
 Common GUIDs we can exploreCommon GUIDs we can explore
 Basic tests Basic tests

Test GUID by opening explorer and placing Test GUID by opening explorer and placing
::{GUID} in search bar::{GUID} in search bar

Name a folder test.{GUID} where the GUID is Name a folder test.{GUID} where the GUID is
one from belowone from below

COM Hijacking -Phase ICOM Hijacking -Phase I
 Once the GUID is entered, the folder becomes Once the GUID is entered, the folder becomes

available.available.
 When looking at properties, we can see some When looking at properties, we can see some

differencesdifferences

Phase I ExamplePhase I Example

COM Hijacking – Phase II: Junction FoldersCOM Hijacking – Phase II: Junction Folders
 C:\Users\%USERNAME%\AppData\Roaming\Microsoft\Windows\StC:\Users\%USERNAME%\AppData\Roaming\Microsoft\Windows\St

art Menu\Programs\Startup\Accessories\Indexer\art Menu\Programs\Startup\Accessories\Indexer\
 Generate random GUID, attach to Payload.{GUID} in Indexer folderGenerate random GUID, attach to Payload.{GUID} in Indexer folder
 Create GUID in HKCU\Software\Classes\CLSID\{GUID}Create GUID in HKCU\Software\Classes\CLSID\{GUID}
 Attach InProcServer32 key and point that to payloadAttach InProcServer32 key and point that to payload
 This will create startup persistenceThis will create startup persistence

How It WorksHow It Works

System Startup
Contents of

Startup Folders
get loaded

Payload.{GUID}
gets

loaded/executed

GUID referenced
in Registry

GUID
InProcServer32

referenced
Payload executed

COM Hijacking –Phase IICOM Hijacking –Phase II

 Generate your own GUID to testGenerate your own GUID to test

COM Hijacking -Phase IICOM Hijacking -Phase II
 Start ProcMon, and filter for your GUIDStart ProcMon, and filter for your GUID

 Open folder Payload.{GUID}Open folder Payload.{GUID}

 Approximately 34 requests are made to operation RegOpenKey Approximately 34 requests are made to operation RegOpenKey
looking like this.looking like this.

COM Hijacking -Phase IICOM Hijacking -Phase II
 Since this device is domain joined, it will point to Since this device is domain joined, it will point to

HCU/(Some SID)_Classes\CLSIDHCU/(Some SID)_Classes\CLSID
 Follow this path and add the keyFollow this path and add the key

COM Hijacking -Phase IICOM Hijacking -Phase II
 Click on our Payload folder and now we have Click on our Payload folder and now we have

some SUCCESS results.some SUCCESS results.
 Registry is now finding the locationRegistry is now finding the location

 Now, let’s find some ways to abuse this for persistence.Now, let’s find some ways to abuse this for persistence.

COM Hijacking -Phase IICOM Hijacking -Phase II

 Restart the machine and rerun ProcMonRestart the machine and rerun ProcMon

 We now see InProcServer32 being looked forWe now see InProcServer32 being looked for

 Let’s happily oblige the Registry gods.Let’s happily oblige the Registry gods.

COM Hijacking -Phase IICOM Hijacking -Phase II
 Create the keys, and point to your backdoorCreate the keys, and point to your backdoor

 Click on the Payload folder, and shazamClick on the Payload folder, and shazam

Phase II ExamplePhase II Example

COM Hijacking -Part IIICOM Hijacking -Part III
 It is possible to take over GUID requests on It is possible to take over GUID requests on

reboot/startup of a machine.reboot/startup of a machine.
 690 Hijackable InProcServer32 on reboot690 Hijackable InProcServer32 on reboot
 495 Hijackable TreatAs on reboot495 Hijackable TreatAs on reboot
 Probably left over for legacy reasonsProbably left over for legacy reasons

Terrible idea, but thank you MicrosoftTerrible idea, but thank you Microsoft
 Set ProcMon to start logging from boot.Set ProcMon to start logging from boot.

Options -> Enable Boot LoggingOptions -> Enable Boot Logging
 Reboot machineReboot machine

COM Hijacking -Part IIICOM Hijacking -Part III

 Huzzah! During bootup we can see feeble Huzzah! During bootup we can see feeble
attempts to reach out to keys that do not exist. attempts to reach out to keys that do not exist.

COM Hijacking -Part IIICOM Hijacking -Part III
 GUID {FF393560-C2A7-11CF-BFF4-GUID {FF393560-C2A7-11CF-BFF4-

444553540000}\InprocServer32 is being called 444553540000}\InprocServer32 is being called
out to which is attached to Explorer.exeout to which is attached to Explorer.exe

 Create the necessary keys and GUIDCreate the necessary keys and GUID

 Restart the machineRestart the machine

 Make sure a listener is running on your attack machine/teamserverMake sure a listener is running on your attack machine/teamserver

COM Hijacking -Part IIICOM Hijacking -Part III
 Upon restart of the machine, a shell should popUpon restart of the machine, a shell should pop

UAC Bypass Study With COMUAC Bypass Study With COM
 https://offsec.provadys.com/UAC-bypass-dotnet.htmlhttps://offsec.provadys.com/UAC-bypass-dotnet.html

 By making a few profile path modifications, we can leverage COM to do some dirty By making a few profile path modifications, we can leverage COM to do some dirty
work for us.work for us.
 COR_ENABLE_PROFILING=1COR_ENABLE_PROFILING=1

 COR_PROFILER={GUID}COR_PROFILER={GUID}

 COR_PROFILER_PATH=C:\path\to\payload.dllCOR_PROFILER_PATH=C:\path\to\payload.dll

 The only other requirement is to run an executable that is auto-elevated such as mmc. The only other requirement is to run an executable that is auto-elevated such as mmc.

 You need to create GUID in HKCU\Software\Classes\CLSID, and make a few You need to create GUID in HKCU\Software\Classes\CLSID, and make a few
modifications in HCKU\Environmentmodifications in HCKU\Environment

 COR_PROFILER_PATH also works with UNC paths.COR_PROFILER_PATH also works with UNC paths.

UAC Bypass Study With COMUAC Bypass Study With COM

Using our AccessUsing our Access
 Now that we can execute code via COM, what do we run?Now that we can execute code via COM, what do we run?

 Requirements:Requirements:
 Must be an on-disk DLLMust be an on-disk DLL

 Must not require interactionMust not require interaction

 Must run our malicious code when loaded (through DllMain)Must run our malicious code when loaded (through DllMain)

 Must execute a stager for our Remote Access ToolMust execute a stager for our Remote Access Tool

 Ideally, would execute stager from memory without needing any other file(s)Ideally, would execute stager from memory without needing any other file(s)

 Ideally, could download stager from URL before executing itIdeally, could download stager from URL before executing it

Choosing a RATChoosing a RAT
 Modern offensive tradecraft prefers to operate entirely from memoryModern offensive tradecraft prefers to operate entirely from memory

 On Windows, the .NET Framework is convenient for thisOn Windows, the .NET Framework is convenient for this

 Offensive .NET tools are often written in:Offensive .NET tools are often written in:
 PowerShell scriptsPowerShell scripts

 C# DLLs or EXEs, known as “.NET Assemblies”C# DLLs or EXEs, known as “.NET Assemblies”

 We will use SILENTTRINITY, an open source .NET RATWe will use SILENTTRINITY, an open source .NET RAT

SILENTTRINITY - @byt3bl33d3rSILENTTRINITY - @byt3bl33d3r
 BYOI – Bring Your Own InterpreterBYOI – Bring Your Own Interpreter

 C2 Framework / RAT that embeds interpreters into memoryC2 Framework / RAT that embeds interpreters into memory

 Can execute C#, IronPython, and Boo from memoryCan execute C#, IronPython, and Boo from memory

 None of the scripting languages need to be present or installedNone of the scripting languages need to be present or installed

SILENTTRINITY – Layers of .NETSILENTTRINITY – Layers of .NET
 IronPython and Boo are .NET Scripting languagesIronPython and Boo are .NET Scripting languages

 Both can be run as engines from C#Both can be run as engines from C#

 Embeds an IronPython engine in an IronPython engine inside C#Embeds an IronPython engine in an IronPython engine inside C#

How do we run it?How do we run it?
 ST provides a .NET DLL that can be used to stage an implant into memoryST provides a .NET DLL that can be used to stage an implant into memory

 Challenges:Challenges:
1.1. The DLL must run without being dropped to diskThe DLL must run without being dropped to disk

2.2. .NET code is easily reversed; we should wrap it in some native executable.NET code is easily reversed; we should wrap it in some native executable

3.3. .NET code is interpreted; it cannot be run directly through process injection.NET code is interpreted; it cannot be run directly through process injection

4.4. C# (what ST is written in) does not provide a DllMain functionalityC# (what ST is written in) does not provide a DllMain functionality

Solution - 1Solution - 1
 .NET programs can load other .NET programs from memory.NET programs can load other .NET programs from memory

 Use the built-in System.Reflection.Assembly.Load(byte[] fileBytes) API callUse the built-in System.Reflection.Assembly.Load(byte[] fileBytes) API call

 Can load and execute a .NET EXE or DLL from memory in < 5 lines of codeCan load and execute a .NET EXE or DLL from memory in < 5 lines of code

Solution - 2Solution - 2
 All .NET programs can be reversed to source code using programs such as dnSpyAll .NET programs can be reversed to source code using programs such as dnSpy

 Decompilers can even extract variable/class names and some commentsDecompilers can even extract variable/class names and some comments

 So, we will instead write our payload in C++So, we will instead write our payload in C++
 Not immune to reverse engineeringNot immune to reverse engineering

 But, harder than .NETBut, harder than .NET

Solution – 3Solution – 3
 All .NET code is run through the Common Language RuntimeAll .NET code is run through the Common Language Runtime

 .NET is assembled into an intermediate language (CIL), which is compiled “just-in-time”.NET is assembled into an intermediate language (CIL), which is compiled “just-in-time”

 Microsoft provides a hybrid language: C++/CLIMicrosoft provides a hybrid language: C++/CLI

 Produces a “Mixed Assembly”Produces a “Mixed Assembly”
 Contains both native and managed (.NET) codeContains both native and managed (.NET) code

 Run Assembly.Load from managed C++Run Assembly.Load from managed C++

Solution - 4Solution - 4
 We can use DllMain in C++We can use DllMain in C++

 To avoid Loader LockTo avoid Loader Lock
 DllMain > CreateThread > NativeFunction > ManagedFunction > Assembly.LoadDllMain > CreateThread > NativeFunction > ManagedFunction > Assembly.Load

 URL for C2 server is embedded int payloadURL for C2 server is embedded int payload

DemoDemo
 Use a MixedAssembly DLL to load SILENTTRINITY from memoryUse a MixedAssembly DLL to load SILENTTRINITY from memory

 The SILENTTRINITY DLL is embedded as a resource in our C++ DLLThe SILENTTRINITY DLL is embedded as a resource in our C++ DLL
 Can also be downloaded into memory using WebClientCan also be downloaded into memory using WebClient

 Test with TestLoad.exeTest with TestLoad.exe
 Calls LoadLibrary on our DLLCalls LoadLibrary on our DLL

 When used with COM, will execute whenever the GUID is usedWhen used with COM, will execute whenever the GUID is used
 We’ll get another running implant on targetWe’ll get another running implant on target

 Results in regular persistenceResults in regular persistence

Questions?Questions?
 Sean HopkinsSean Hopkins

 Twitter: Twitter: https://twitter.com/M0arC0ff33https://twitter.com/M0arC0ff33

 GitHub: GitHub: https://github.com/M0arC0ff33https://github.com/M0arC0ff33

 Shawn EdwardsShawn Edwards
 Twitter: Twitter: https://twitter.com/TheRealWoverhttps://twitter.com/TheRealWover

 GitHub: GitHub: https://github.com/TheWoverhttps://github.com/TheWover

https://twitter.com/M0arC0ff33
https://twitter.com/M0arC0ff33
https://github.com/M0arC0ff33
https://github.com/M0arC0ff33
https://twitter.com/TheRealWover
https://twitter.com/TheRealWover
https://github.com/TheWover
https://github.com/TheWover

ResourcesResources
 https://offsec.provadys.com/UAC-bypass-dotnet.htmlhttps://offsec.provadys.com/UAC-bypass-dotnet.html

 https://www.commonexploits.com/unquoted-service-paths/https://www.commonexploits.com/unquoted-service-paths/

 https://www.fuzzysecurity.com/index.htmlhttps://www.fuzzysecurity.com/index.html

 https://www.blackhillsinfosec.com/?p=5257 https://www.blackhillsinfosec.com/?p=5257

 https://twitter.com/harmj0yhttps://twitter.com/harmj0y

 https://blog.harmj0y.net/https://blog.harmj0y.net/

 https://subt0x11.blogspot.com/https://subt0x11.blogspot.com/

 https://twitter.com/tiraniddohttps://twitter.com/tiraniddo

 https://www.youtube.com/watch?v=dfMuzAZRGm4https://www.youtube.com/watch?v=dfMuzAZRGm4

 https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

