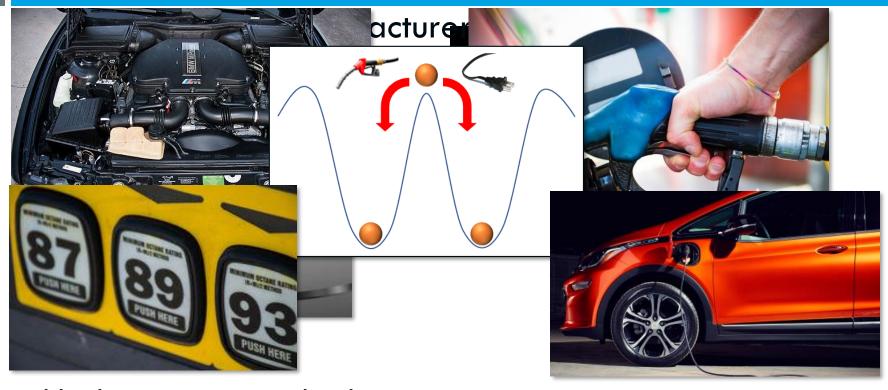


Innovation & Entrepreneurship

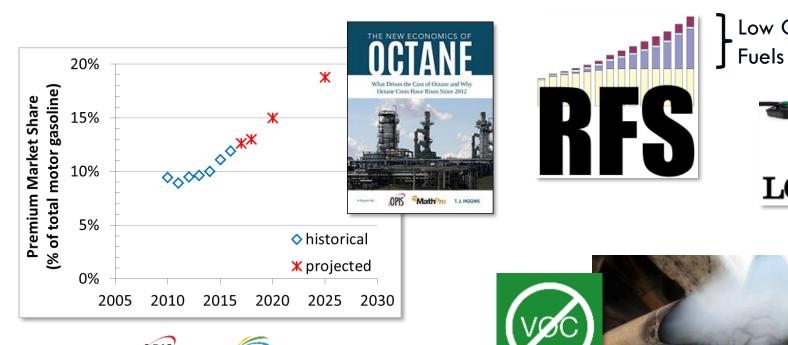
Innovation Showcase

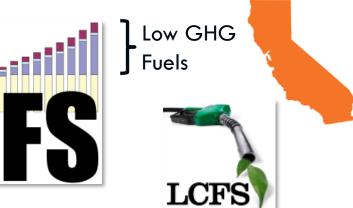

CuB Fuels

Renewable Octane. Improved Gasoline. Josh Schaidle, Jesse Hensley, and Dan Ruddy

September 21st, 2018

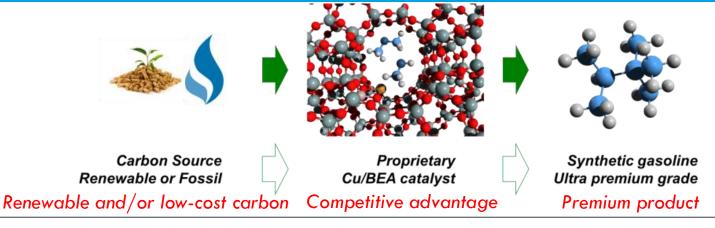
Beaver Creek, CO


Gasoline is Living in the Past



Need higher octane standard

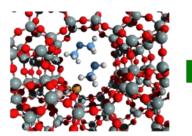
Need charging infrastructure


Market Pull for Green Octane

Synthetic Alkylate Meets the Need

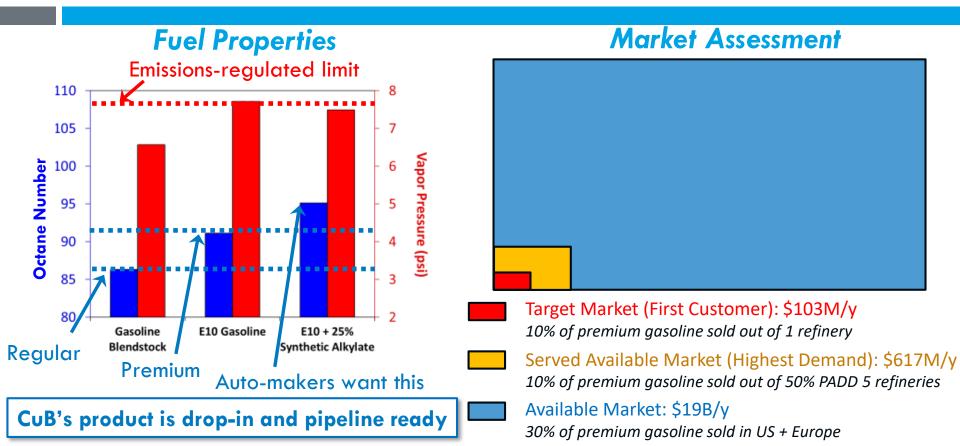
Key advantages of our synthetic alkylate:

- Unlike grain Ethanol, provides octane boost while decreasing vapor pressure, does not consume food crops, and is eligible for advanced RFS credits
- Unlike refinery reformate, does not contribute to particulate pollution and expands product volume
- Unlike refinery alkylate, provides a higher-octane alternative for an industry already operating at maximum capacity and is naturally sulfur-free


Value Proposition

Help mid-sized West Coast automotive fuel refiners to meet regulatory mandates (RFS, LCFS, CARB) while also increasing their gross profits by \$60 MM/y by providing a synthetic, bio-derived alkylate blendstock.

Carbon Source Renewable or Fossil


Proprietary Cu/BEA catalyst

Competitive advantage Premium product

Synthetic gasoline Ultra premium grade

Renewable and/or low-cost carbon

The Key Advantage and The Market

Revenue Streams

1 st

West Coast Market

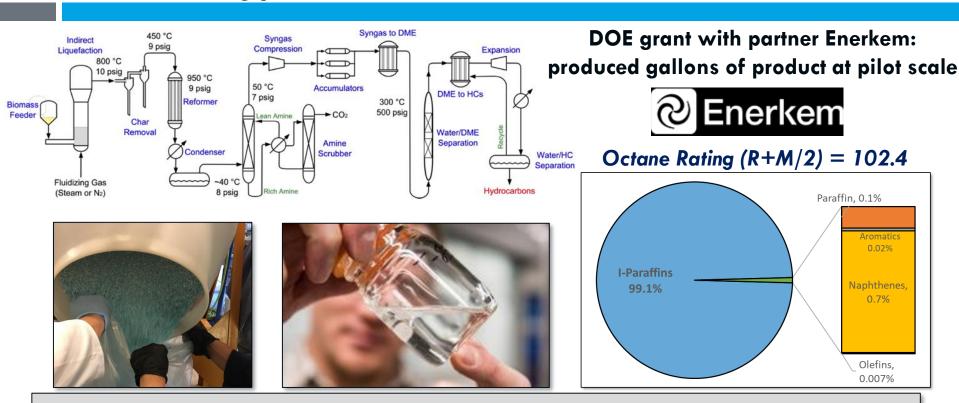
Assumptions:

- Oil @ \$50/bbl
- \$0 RFS credit from license play
- 1^{st} customer = 4 kbbl/d production
- Catalyst sale price \$32/lb

License IP: 3% of catalyst sales \$500k/y \$83k/y

\$6.2M/y License IP: 1% of fuel sales \$1M/y

Produce from fossil NG \$103M/y \$617M/y


\$1.5B/y Produce from bio-NG \$243M/v

Strategic partners are a necessity for technology and product validation at scale

→ Royalties go back into the lab

Current Development:

Technology and Product Validation

Fuel currently undergoing testing by 1 major auto manufacturer and 2 major refiners

Next Steps

- Milestone 1: Demonstrate similar catalyst productivity at pilot scale as observed at bench scale
 - Driver: Productivity significantly impacts process economics
 - Timeline: 6 months
 - Funding Required: \$500k

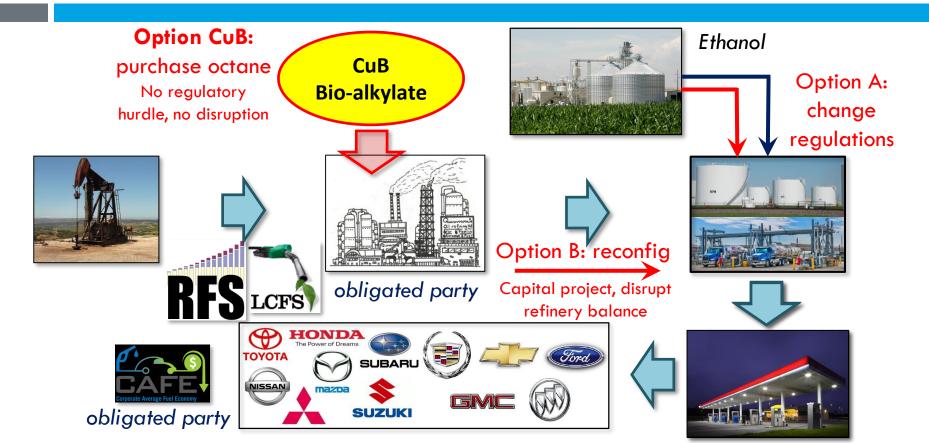
- Driver: Fuel volume requirements for external product validation
- Timeline: 1 year
- Funding Required: \$1.5M

Critical Need: We are seeking a strategic partner with established expertise in the development and scale-up of catalysts and technologies for hydrocarbon processing

Thank You

Contact us to discuss how our technology can address your needs

CuB Fuels Renewable Octane. Improved Gasoline.

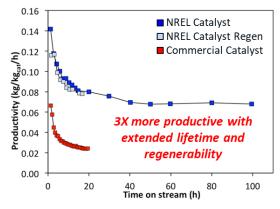


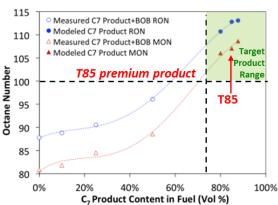
Josh Schaidle Jesse Hensley

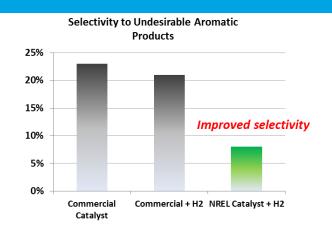
Dan Ruddy

303-384-6322, HighOctane@nrel.gov

The Gasoline Ecosystem in North America


Alternative Market: Aviation Gasoline


- Avgas is a specialized fuel used to power piston engine aircraft
 - □ 167,000 aircraft in US require avgas for safe operation
 - Market size: ~150M gallons per year
- \Box These aircraft require high octane (~100 MON)
 - Tetraethyl lead is used to boost octane, but is toxic to humans
 - Primary avgas fuel is 100LL (100 MON, Low Lead)
- FAA is actively seeking to remove lead from avgas
 - Initiated the Piston Aviation Fuel Initiative to overcome technical and logistical challenges to developing and deploying a new, unleaded fuel, but...
 - A suitable, operationally-safe replacement has yet to be found



 H_3C

Key Features of the Technology

6 components make up majority of C_{5+} product

Products	Formula	Mol%
2-methylbutane	C ₅ H ₁₂	27.7
2-Methylpentane	C_6H_{14}	7.9
2,3-Dimethylbutane	C_6H_{14}	6.5
2,2,3-Trimethylbutane	C_7H_{16}	28.7
2-Methylhexane	C_7H_{16}	8.4
2,2,4-Trimethylpentane	C_8H_{18}	20.7

Boiling point range 27-99 °C

How our Process Differs from Exxon-Mobil's "MTG"

Methanol to Gasoline (MTG) Pathway	High-Octane Gasoline (HOG) Pathway	Advantage of HOG Pathway
	\	Branched HC product, minimal aromatics
ZSM-5 catalyst	Beta-zeolite catalyst	
350 – 500 °C 20 atm	175 − 225 °C 1-10 atm	Lower severity conditions, lower coking rate
RON: 92 MON: 83	RON: 95+ MON: 90+	High octane synthetic alkylate
100 gal*	118 gal*	Higher yield (18%)

^{*}relative yield from same carbon source